Applications of machine learning in decision analysis for dose management for dofetilide

BackgroundInitiation of the antiarrhythmic medication dofetilide requires an FDA-mandated 3 days of telemetry monitoring due to heightened risk of toxicity within this time period. Although a recommended dose management algorithm for dofetilide exists, there is a range of real-world approaches to dosing the medication.Methods and resultsIn this multicenter investigation, clinical data from the Antiarrhythmic Drug Genetic (AADGEN) study was examined for 354 patients undergoing dofetilide initiation. Univariate logistic regression identified a starting dofetilide dose of 500 mcg (OR 5.0, 95%CI 2.5–10.0, p<0.001) and sinus rhythm at the start of dofetilide loading (OR 2.8, 95%CI 1.8–4.2, p<0.001) as strong positive predictors of successful loading. Any dose-adjustment during loading (OR 0.19, 95%CI 0.12–0.31, p<0.001) and a history coronary artery disease (OR 0.33, 95%CI 0.19–0.59, p<0.001) were strong negative predictors of successful dofetilide loading. Based on the observation that any dose adjustment was a significant negative predictor of successful initiation, we applied multiple supervised approaches to attempt to predict the dose adjustment decision, but none of these approaches identified dose adjustments better than a probabilistic guess. Principal component analysis and cluster analysis identified 8 clusters as a reasonable data reduction method. These 8 clusters were then used to define patient states in a tabular reinforcement learning model trained on 80% of dosing decisions. Testing of this model on the remaining 20% of dosing decisions revealed good accuracy of the reinforcement learning model, with only 16/410 (3.9%) instances of disagreement.ConclusionsDose adjustments are a strong determinant of whether patients are able to successfully initiate dofetilide. A reinforcement learning algorithm informed by unsupervised learning was able to predict dosing decisions with 96.1% accuracy. Future studies will apply this algorithm prospectively as a data-driven decision aid.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.1371/journal.pone.0227324
URL http://dx.doi.org/10.1371/journal.pone.0227324
URL https://figshare.com/articles/Applications_of_machine_learning_in_decision_analysis_for_dose_management_for_dofetilide/11484582
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right Open Access
Attribution

Description: Authorships and contributors

Field Value
Author Levy, Andrew E.
Author Biswas, Minakshi
Author Weber, Rachel
Author Tarakji, Khaldoun
Author Chung, Mina
Author Noseworthy, Peter A.
Author Newton-Cheh, Christopher
Author Rosenberg, Michael A.
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From figshare
Hosted By figshare
Publication Date 2019-01-01
Publisher Figshare
Additional Info
Field Value
Language UNKNOWN
Resource Type Dataset
system:type dataset
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/dataset?datasetId=r37980778c78::ff50dae57bf31510b908dbc2d4072d3d
Author jsonws_user
Last Updated 8 January 2021, 18:38 (CET)
Created 8 January 2021, 18:38 (CET)