r37980778c78--f53f438e2153d429d49a1f066f1216f6

A series of organic D-π-A sensitizers composed of different triarylamine donors in conjugation with the thienothiophene unit and cyanoacrylic acid as an acceptor has been synthesized at a moderate yield. Through tuning the number of methoxy substituents on the triphenylamine donor, we have gradually red-shifted the absorption of sensitizers to enhance device efficiencies. Further molecular engineering by the substitution of two hexyloxy chains in place of the methoxy groups allows fabricating a solvent-free dye-sensitized solar cell with a power conversion efficiency of 7.05% measured under the air mass 1.5 global sunlight. Time- and frequency-domain photoelectrical techniques have been employed to scrutinize the aliphatic chain effects with a close inspection on effective electron lifetime, diffusion coefficient, and diffusion length.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.1021/jp808275z.s001
URL https://figshare.com/articles/journal_contribution/Energy_Level_and_Molecular_Engineering_of_Organic_D_A_Sensitizers_in_Dye_Sensitized_Solar_Cells/2893384
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right Open Access
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From figshare
Hosted By figshare
Publication Date 2016-02-26
Additional Info
Field Value
Language UNKNOWN
Resource Type Other literature type
system:type publication
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/publication?articleId=r37980778c78::f53f438e2153d429d49a1f066f1216f6
Author jsonws_user
Last Updated 24 December 2020, 11:46 (CET)
Created 24 December 2020, 11:46 (CET)