r37980778c78--ce90fa6f7593507a6d2b035119cbd847

Hybrid organic–inorganic perovskite materials are promising materials for photovoltaic and optoelectronic applications. Nevertheless, the construction of a computationally efficient potential model for atomistic simulations of perovskite with high fidelity to ab initio calculations is not a trivial task given the chemically complex nature of perovskite in terms of its chemical components and interatomic interactions. In the present study, we demonstrate that artificial neural network (ANN) models can be employed for efficient and accurate potential energy evaluation of MAPbI3 perovskite materials. The ANN models were trained using training sets composed of thousands of atomic images of tetragonal MAPbI3 crystals, with their respective energies and atomic forces obtained from ab initio calculations. The trained ANN models were validated by predicting the lattice parameters and energies/atomic forces of cubic MAPbI3 perovskite and had excellent agreement with ab initio calculations. The phonon modes could also be extracted using the trained ANN model with good agreement with ab initio calculations, provided that the atomic forces were incorporated into the training processes. Finally, we demonstrate that for a given system size, the trained ANN model offers 104 to 105 faster time consumption per energy evaluation relative to ab initio calculations using Vienna Ab initio Simulation Package, demonstrating the potential of the ANN model for exhaustively sampling the configuration spaces of chemically complex materials for predictions of thermodynamic properties and phase stabilities.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.1021/acsomega.9b00378.s004
URL https://figshare.com/articles/Fast_and_Accurate_Artificial_Neural_Network_Potential_Model_for_MAPbI_sub_3_sub_Perovskite_Materials/8313881
URL http://dx.doi.org/10.1021/acsomega.9b00378.s004
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right Open Access
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From figshare
Hosted By figshare
Publication Date 2019-06-24
Additional Info
Field Value
Language UNKNOWN
Resource Type Audiovisual; Dataset
system:type dataset
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/dataset?datasetId=r37980778c78::ce90fa6f7593507a6d2b035119cbd847
Author jsonws_user
Last Updated 2 January 2021, 21:34 (CET)
Created 2 January 2021, 21:34 (CET)