Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle

Abstract Background While autozygosity as a consequence of selection is well understood, there is limited information on the ability of different methods to measure true inbreeding. In the present study, a gene dropping simulation was performed and inbreeding estimates based on runs of homozygosity (ROH), pedigree, and the genomic relationship matrix were compared to true inbreeding. Inbreeding based on ROH was estimated using SNP1101, PLINK, and BCFtools software with different threshold parameters. The effects of different selection methods on ROH patterns were also compared. Furthermore, inbreeding coefficients were estimated in a sample of genotyped North American Holstein animals born from 1990 to 2016 using 50 k chip data and ROH patterns were assessed before and after genomic selection. Results Using ROH with a minimum window size of 20 to 50 using SNP1101 provided the closest estimates to true inbreeding in simulation study. Pedigree inbreeding tended to underestimate true inbreeding, and results for genomic inbreeding varied depending on assumptions about base allele frequencies. Using an ROH approach also made it possible to assess the effect of population structure and selection on distribution of runs of autozygosity across the genome. In the simulation, the longest individual ROH and the largest average length of ROH were observed when selection was based on best linear unbiased prediction (BLUP), whereas genomic selection showed the largest number of small ROH compared to BLUP estimated breeding values (BLUP-EBV). In North American Holsteins, the average number of ROH segments of 1 Mb or more per individual increased from 57 in 1990 to 82 in 2016. The rate of increase in the last 5 years was almost double that of previous 5 year periods. Genomic selection results in less autozygosity per generation, but more per year given the reduced generation interval. Conclusions This study shows that existing software based on the measurement of ROH can accurately identify autozygosity across the genome, provided appropriate threshold parameters are used. Our results show how different selection strategies affect the distribution of ROH, and how the distribution of ROH has changed in the North American dairy cattle population over the last 25 years.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.3988920.v1
PID https://www.doi.org/10.6084/m9.figshare.c.3988920
URL http://dx.doi.org/10.6084/m9.figshare.c.3988920
URL http://dx.doi.org/10.6084/m9.figshare.c.3988920.v1
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Mehrnush Forutan
Author Saeid Ansari Mahyari
Author Baes, Christine
Author Melzer, Nina
Author Schenkel, Flavio
Author Sargolzaei, Mehdi
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2018-01-01
Publisher Figshare
Additional Info
Field Value
Language UNKNOWN
Resource Type Collection
keyword FOS: Biological sciences
keyword FOS: Computer and information sciences
keyword FOS: Mathematics
system:type other
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/other?orpId=dedup_wf_001::f83c76c77d29f0a5431682556803196a
Author jsonws_user
Last Updated 18 December 2020, 17:35 (CET)
Created 18 December 2020, 17:35 (CET)