Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency

Abstract Background Iron (Fe) is an essential element for plant growth and development, whereas cadmium (Cd) is non-essential and highly toxic. Previous studies showed that Fe deficiency enhanced Cd uptake and accumulation in peanuts. However, the molecular mechanism underlying the increased Cd accumulation in Fe-deficient peanut plants is poorly understood. Results We employed a comparative transcriptome analysis approach to identify differentially expressed genes (DEGs) in peanut roots exposed to Fe-sufficient without Cd, Fe-deficient without Cd, Fe-sufficient with Cd and Fe-deficient with Cd. Compared with the control, Fe deficiency induced 465 up-regulated and 211 down-regulated DEGs, whereas the up- and down-regulated DEGs in Cd exposed plants were 329 and 189, respectively. Under Fe-deficient conditions, Cd exposure resulted in 907 up-regulated DEGs and 953 down-regulated DEGs. In the presence of Cd, Fe deficiency induced 1042 up-regulated and 847 down-regulated genes, respectively. Based on our array data, we found that metal transporter genes such as CAX4, COPT1, IRT1, NRAMP5, OPT3, YSL3, VIT3 and VIT4 might be involved in iron homeostasis. Moreover, combined with quantitative real-time PCR, IRT1, NRAMP3, NRAMP5, OPT3, YSL3, ABCC3, ZIP1, and ZIP5 were verified to be responsible for Cd uptake and translocation in peanut plants under iron deficiency. Additionally, a larger amount of ABC transporter genes was induced or suppressed by iron deficiency under Cd exposure, indicating that this family may play important roles in Fe/Cd uptake and transport. Conclusions The up-regulated expression of NRAMP5 and IRT1 genes induced by iron deficiency may enhance Cd uptake in peanut roots. The decrease of Cd translocation from roots to shoots may be resulted from the down-regulation of ZIP1, ZIP5 and YSL3 under iron deficiency.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.4373411
PID https://www.doi.org/10.6084/m9.figshare.c.4373411.v1
URL http://dx.doi.org/10.6084/m9.figshare.c.4373411
URL http://dx.doi.org/10.6084/m9.figshare.c.4373411.v1
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Chen, Chu
Author Qiqi Cao
Author Jiang, Qun
Author Li, Jin
Author Rugang Yu
Author Gangrong Shi
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2019-01-01
Publisher Figshare
Additional Info
Field Value
Language UNKNOWN
Resource Type Collection
keyword FOS: Chemical sciences
keyword FOS: Mathematics
keyword FOS: Biological sciences
keyword FOS: Earth and related environmental sciences
system:type other
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/other?orpId=dedup_wf_001::c2338fe8bb5bd001a545669db06c5878
Author jsonws_user
Last Updated 20 December 2020, 00:38 (CET)
Created 20 December 2020, 00:38 (CET)