Effectiveness of conservative interventions for sickness and pain behaviors induced by a high repetition high force upper extremity task

Abstract Background Systemic inflammation is known to induce sickness behaviors, including decreased social interaction and pain. We have reported increased serum inflammatory cytokines in a rat model of repetitive strain injury (rats perform an upper extremity reaching task for prolonged periods). Here, we sought to determine if sickness behaviors are induced in this model and the effectiveness of conservative treatments. Methods Experimental rats underwent initial training to learn a high force reaching task (10 min/day, 5 days/week for 6 weeks), with or without ibuprofen treatment (TRHF vs. TRHF + IBU rats). Subsets of trained animals went on to perform a high repetition high force (HRHF) task for 6 or 12 weeks (2 h/day, 3 days/week) without treatment, or received two secondary interventions: ibuprofen (HRHF + IBU) or a move to a lower demand low repetition low force task (HRHF-to-LRLF), beginning in task week 5. Mixed-effects models with repeated measures assays were used to assay duration of social interaction, aggression, forepaw withdrawal thresholds and reach performance abilities. One-way and two-way ANOVAs were used to assay tissue responses. Corrections for multiple comparisons were made. Results TRHF + IBU rats did not develop behavioral declines or systemic increases in IL-1beta and IL-6, observed in untreated TRHF rats. Untreated HRHF rats showed social interaction declines, difficulties performing the operant task and forepaw mechanical allodynia. Untreated HRHF rats also had increased serum levels of several inflammatory cytokines and chemokines, neuroinflammatory responses (e.g., increased TNFalpha) in the brain, median nerve and spinal cord, and Substance P and neurokinin 1 immunoexpression in the spinal cord. HRHF + IBU and HRHF-to-LRLF rats showed improved social interaction and reduced inflammatory serum, nerve and brain changes. However, neither secondary treatment rescued HRHF-task induced forepaw allodynia, or completely attenuated task performance declines or spinal cord responses. Conclusions These results suggest that inflammatory mechanisms induced by prolonged performance of high physical demand tasks mediate the development of social interaction declines and aggression. However, persistent spinal cord sensitization was associated with persistent behavioral indices of discomfort, despite use of conservative secondary interventions indicating the need for prevention or more effective interventions.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.3729721.v1
PID https://www.doi.org/10.6084/m9.figshare.c.3729721
URL https://dx.doi.org/10.6084/m9.figshare.c.3729721
URL https://dx.doi.org/10.6084/m9.figshare.c.3729721.v1
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author D. Xin
Author J. Hadrévi
Author M. Elliott
Author M. Amin
Author M. Harris
Author A. Barr-Gillespie
Author M. Barbe
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2017-03-30
Publisher Figshare
Additional Info
Field Value
Language Undetermined
Resource Type Dataset
keyword FOS: Biological sciences
system:type dataset
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/dataset?datasetId=dedup_wf_001::a3f7277503eaca8e1d07c48aebd28b86
Author jsonws_user
Last Updated 14 January 2021, 14:51 (CET)
Created 14 January 2021, 14:51 (CET)