TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI)

Abstract Background Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication with high incidence in both advanced and developing countries. Children surviving from HIE often have severe long-term sequela including cerebral palsy, epilepsy, and cognitive disabilities. The severity of HIE in infants is tightly associated with increased IL-1β expression and astrocyte activation which was regulated by transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel in the TRP family. Methods Neonatal hypoxic ischemia (HI) and oxygen-glucose deprivation (OGD) were used to simulate HIE in vivo and in vitro. Primarily cultured astrocytes were used for investigating the expression of glial fibrillary acidic protein (GFAP), IL-1β, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and activation of the nucleotide-binding, oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome by using Western blot, q-PCR, and immunofluorescence. Brain atrophy, infarct size, and neurobehavioral disorders were evaluated by Nissl staining, 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining and neurobehavioral tests (geotaxis reflex, cliff aversion reaction, and grip test) individually. Results Astrocytes were overactivated after neonatal HI and OGD challenge. The number of activated astrocytes, the expression level of IL-1β, brain atrophy, and shrinking infarct size were all downregulated in TRPV1 KO mice. TRPV1 deficiency in astrocytes attenuated the expression of GFAP and IL-1β by reducing phosphorylation of JAK2 and STAT3. Meanwhile, IL-1β release was significantly reduced in TRPV1 deficiency astrocytes by inhibiting activation of NLRP3 inflammasome. Additionally, neonatal HI-induced neurobehavioral disorders were significantly improved in the TRPV1 KO mice. Conclusions TRPV1 promotes activation of astrocytes and release of astrocyte-derived IL-1β mainly via JAK2-STAT3 signaling and activation of the NLRP3 inflammasome. Our findings provide mechanistic insights into TRPV1-mediated brain damage and neurobehavioral disorders caused by neonatal HI and potentially identify astrocytic TRPV1 as a novel therapeutic target for treating HIE in the subacute stages (24 h).

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.4522730
PID https://www.doi.org/10.1186/s12974-019-1487-3
PID https://www.doi.org/10.6084/m9.figshare.c.4522730.v1
URL https://dx.doi.org/10.6084/m9.figshare.c.4522730
URL https://dx.doi.org/10.6084/m9.figshare.c.4522730.v1
URL https://dx.doi.org/10.1186/s12974-019-1487-3
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Xing-Liang Yang
Author Wang, Xin
Author Shao, Lin
Author Guang-Tong Jiang
Author Min, Jia-Wei
Author Mei, Xi-Yu
Author He, Xiao-Hua
Author Liu, Wan-Hong
Author Huang, Wen-Xian
Author Bi-Wen Peng
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2019-05-30
Publisher Figshare
Additional Info
Field Value
Language Undetermined
Resource Type Dataset
keyword FOS: Health sciences
keyword FOS: Biological sciences
keyword FOS: Clinical medicine
system:type dataset
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/dataset?datasetId=dedup_wf_001::93020144853f8a20aced62dfb347fab2
Author jsonws_user
Last Updated 14 January 2021, 12:32 (CET)
Created 14 January 2021, 12:32 (CET)