Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter

Abstract Background Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). Methods We performed a cross-sectional study of 135 children ages 9–14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. Results In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m3), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs −77, −65, and −58) (β estimate = −2.37%, p  0.05). Differences across strata were statistically significant (p interaction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (β estimate = −0.40%, p

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.3802528
PID https://www.doi.org/10.6084/m9.figshare.c.3802528.v1
URL http://dx.doi.org/10.6084/m9.figshare.c.3802528.v1
URL http://dx.doi.org/10.6084/m9.figshare.c.3802528
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Lovinsky-Desir, Stephanie
Author Jung, Kyung
Author Jezioro, Jacqueline
Author Torrone, David
Author Mariangels De Planell-Saguer
Author Beizhan Yan
Author Perera, Frederica
Author Rundle, Andrew
Author Perzanowski, Matthew
Author Chillrud, Steven
Author Miller, Rachel
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2017-01-01
Publisher Figshare
Additional Info
Field Value
Language UNKNOWN
Resource Type Collection
keyword FOS: Biological sciences
keyword FOS: Earth and related environmental sciences
system:type other
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/other?orpId=dedup_wf_001::8b91922c4fa2fa7e9405b17324c9a661
Author jsonws_user
Last Updated 19 December 2020, 14:49 (CET)
Created 19 December 2020, 14:49 (CET)