Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction

Abstract Background The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. Results To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Conclusions Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.3811804.v1
PID https://www.doi.org/10.6084/m9.figshare.c.3811804
URL http://dx.doi.org/10.6084/m9.figshare.c.3811804.v1
URL http://dx.doi.org/10.6084/m9.figshare.c.3811804
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Bossi, Flavia
Author Fan, Jue
Author Xiao, Jun
Author Chandra, Lilyana
Author Shen, Max
Author Yanniv Dorone
Author Wagner, Doris
Author Rhee, Seung
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2017-01-01
Publisher Figshare
Additional Info
Field Value
Language UNKNOWN
Resource Type Collection
keyword FOS: Health sciences
keyword FOS: Biological sciences
keyword FOS: Computer and information sciences
system:type other
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/other?orpId=dedup_wf_001::70c675c8e13201359b4e9f2afb90180d
Author jsonws_user
Last Updated 19 December 2020, 13:07 (CET)
Created 19 December 2020, 13:07 (CET)