An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle

Abstract Background In soft fruits, the differential expression of many genes during development and ripening is responsible for changing their organoleptic properties. In strawberry fruit, although some genes involved in the metabolic regulation of the ripening process have been functionally characterized, some of the most studied genes correspond to transcription factors. High throughput transcriptomics analyses performed in strawberry red receptacle (Fragaria x ananassa) allowed us to identify a ripening-related gene that codes an atypical HLH (FaPRE1) with high sequence homology with the PACLOBUTRAZOL RESISTANCE (PRE) genes. PRE genes are atypical bHLH proteins characterized by the lack of a DNA-binding domain and whose function has been linked to the regulation of cell elongation processes. Results FaPRE1 sequence analysis indicates that this gene belongs to the subfamily of atypical bHLHs that also includes ILI-1 from rice, SlPRE2 from tomato and AtPRE1 from Arabidopsis, which are involved in transcriptional regulatory processes as repressors, through the blockage by heterodimerization of bHLH transcription factors. FaPRE1 presented a transcriptional model characteristic of a ripening-related gene with receptacle-specific expression, being repressed by auxins and activated by abscisic acid (ABA). However, its expression was not affected by gibberellic acid (GA3). On the other hand, the transitory silencing of FaPRE1 transcription by agroinfiltration in receptacle produced the down-regulation of a group of genes related to the ripening process while inducing the transcription of genes involved in receptacle growth and development. Conclusions In summary, this work presents for the first time experimental data that support an important novel function for the atypical HLH FaPRE1 during the strawberry fruit ripening. We hypothesize that FaPRE1 modulates antagonistically the transcription of genes related to both receptacle growth and ripening. Thus, FaPRE1 would repress the expression of receptacle growth promoting genes in the ripened receptacle, while it would activate the expression of those genes related to the receptacle ripening process.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.4799274.v1
PID https://www.doi.org/10.6084/m9.figshare.c.4799274
URL http://dx.doi.org/10.6084/m9.figshare.c.4799274
URL http://dx.doi.org/10.6084/m9.figshare.c.4799274.v1
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Medina-Puche, Laura
Author Martínez-Rivas, Félix
Author Molina-Hidalgo, Francisco
Author Mercado, José
Author Moyano, Enriqueta
Author Rodríguez-Franco, Antonio
Author Caballero, José
Author Muñoz-Blanco, Juan
Author Blanco-Portales, Rosario
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2019-01-01
Publisher figshare
Additional Info
Field Value
Language UNKNOWN
Resource Type Collection
keyword FOS: Health sciences
keyword FOS: Biological sciences
keyword FOS: Earth and related environmental sciences
keyword FOS: Clinical medicine
system:type other
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/other?orpId=dedup_wf_001::60ae5a63a894be23afa9ad97d03edded
Author jsonws_user
Last Updated 18 December 2020, 18:13 (CET)
Created 18 December 2020, 18:13 (CET)