Integrated analysis of mRNA-seq and miRNA-seq in calyx abscission zone of Korla fragrant pear involved in calyx persistence

Abstract Background The objective of this study was to characterize molecular mechanism of calyx persistence in Korla fragrant pear by transcriptome and small RNA sequencing. Abscission zone tissues of flowers at three stages (the first, fifth and ninth days of the late bloom stage), with 50 mg/L GA3 (calyx persistence treatment, C_1, C_5, C_9) or 500 mg/L PP333 (calyx abscission treatment, T_1, T_5, T_9), were collected and simultaneously conducted transcriptome and small RNA sequencing. Results Through association analysis of transcriptome and small RNA sequencing, mRNA-miRNA network was conducted. Compared calyx persistence groups with calyx abscission groups during the same stage, 145, 56 and 150 mRNA-miRNA pairs were obtained in C_1 vs T_1, C_5 vs T_5 and C_9 vs T_9, respectively; When C_1 compared with C_5 and C_9, 90 and 506 mRNA-miRNA pairs were screened respectively, and 255 mRNA-miRNA pairs were obtained from the comparison between C_5 and C_9; When T_1 compared with the T_5 and T_9, respectively, 206 and 796 mRNA-miRNA pairs were obtained, and 383 mRNA-miRNA pairs were obtained from the comparison between T_5 and T_9. These mRNAs in miRNA-mRNA pairs were significantly enriched into the terpenoid backbone biosynthesis, photosynthesis - antenna proteins, porphyrin and chlorophyll metabolism, carotenoid biosynthesis, zeatin biosynthesis and plant hormone signal transduction. In addition, we obtained some key genes from miRNA-mRNA pairs that may be associated with calyx abscission, including protein phosphatase 2C (psi-miR394a-HAB1), receptor-like protein kinase (psi-miR396a-5p-HERK1), cellulose synthase-like protein D3 (psi-miR827-CSLD3), beta-galactosidase (psi-miR858b-β-galactosidase), SPL-psi-miR156j/157d, abscisic acid 8′-hydroxylase 1 (psi-miR396a-5p-CYP707A1) and auxin response factor (psi-miR160a-3p-ARF6, psi-miR167d-ARF18, psi-miR167a-5p-ARF25), etc. Conclusion By integrated analysis mRNA and miRNA, our study gives a better understanding of the important genes and regulation pathway related to calyx abscission in Korla fragrant pear. We have also established the network of miRNA-mRNA pairs to learn about precise regulation of miRNA on calyx abscission.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.4500377.v1
PID https://www.doi.org/10.6084/m9.figshare.c.4500377
PID https://www.doi.org/10.1186/s12870-019-1792-0
URL https://dx.doi.org/10.6084/m9.figshare.c.4500377.v1
URL https://dx.doi.org/10.1186/s12870-019-1792-0
URL https://dx.doi.org/10.6084/m9.figshare.c.4500377
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Ma, Li
Author Zhou, Li
Author Quan, Shaowen
Author Xu, Hang
Author Yang, Jieping
Author Niu, Jianxin
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2019-05-10
Publisher Figshare
Additional Info
Field Value
Language Undetermined
Resource Type Dataset
keyword FOS: Chemical sciences
keyword FOS: Health sciences
keyword FOS: Biological sciences
system:type dataset
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/dataset?datasetId=dedup_wf_001::5b44091937a4c1157bc57c470d43865a
Author jsonws_user
Last Updated 16 December 2020, 05:13 (CET)
Created 16 December 2020, 05:13 (CET)