Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity

Macroautophagy/autophagy is an essential cellular response in the fight against intracellular pathogens. Although some viruses can escape from or utilize autophagy to ensure their own replication, the responses of autophagy pathways to viral invasion remain poorly documented. Here, we show that peste des petits ruminants virus (PPRV) infection induces successive autophagic signalling in host cells via distinct and uncoupled molecular pathways. Immediately upon invasion, PPRV induced a first transient wave of autophagy via a mechanism involving the cellular pathogen receptor NECTIN4 and an AKT-MTOR-dependent pathway. Autophagic detection showed that early PPRV infection not only increased the amounts of autophagosomes and LC3-II but also downregulated the phosphorylation of AKT-MTOR. Subsequently, we found that the binding of viral protein H to NECTIN4 ultimately induced a wave of autophagy and inactivated the AKT-MTOR pathway, which is a critical step for the control of infection. Soon after infection, new autophagic signalling was initiated that required viral replication and protein expression. Interestingly, expression of IRGM and HSPA1A was significantly upregulated following PPRV replication. Strikingly, knockdown of IRGM and HSPA1A expression using small interfering RNAs impaired the PPRV-induced second autophagic wave and viral particle production. Moreover, IRGM-interacting PPRV-C and HSPA1A-interacting PPRV-N expression was sufficient to induce autophagy through an IRGM-HSPA1A-dependent pathway. Importantly, syncytia formation could facilitate sustained autophagy and the replication of PPRV. Overall, our work reveals distinct molecular pathways underlying the induction of self-beneficial sustained autophagy by attenuated PPRV, which will contribute to improving the use of vaccines for therapy. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG: autophagy-related; BECN1: beclin 1; CDV: canine distemper virus; Co-IP: coimmunoprecipitation; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; GST: glutathione S-transferase; HMOX1: heme oxygenase 1; hpi: hours post infection; HSPA1A: heat shock protein family A (Hsp70) member 1A; HSP90AA1: heat shock protein 90 kDa alpha (cytosolic), class A member 1; IFN: interferon; IgG: immunoglobulin G; INS: insulin; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide-3 kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SDS: sodium dodecyl sulfate; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; UV: ultraviolet.

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.8956700.v1
PID https://www.doi.org/10.6084/m9.figshare.8956700
URL https://dx.doi.org/10.6084/m9.figshare.8956700
URL http://dx.doi.org/10.6084/m9.figshare.8956700.v1
URL http://dx.doi.org/10.6084/m9.figshare.8956700
URL https://figshare.com/articles/Autophagy_induction_by_the_pathogen_receptor_NECTIN4_and_sustained_autophagy_contribute_to_peste_des_petits_ruminants_virus_infectivity/8956700
URL https://dx.doi.org/10.6084/m9.figshare.8956700.v1
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right Open Access
Attribution

Description: Authorships and contributors

Field Value
Author Yang, Bo
Author Xue, Qinghong
Author Guo, Jiaona
Author Wang, Xueping
Author Zhang, Yanming
Author Guo, Kangkang
Author Li, Wei
Author Chen, Shuying
Author Xue, Tianxia
Author Qi, Xuefeng
Author Wang, Jingyu
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite; figshare
Hosted By figshare
Publication Date 2019-07-18
Publisher Figshare
Additional Info
Field Value
Language Undetermined
Resource Type Dataset
keyword FOS: Health sciences
keyword FOS: Biological sciences
keyword FOS: Clinical medicine
system:type dataset
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/dataset?datasetId=dedup_wf_001::05db7c88aff05cb0fdea2fe51dae93ec
Author jsonws_user
Last Updated 12 January 2021, 19:09 (CET)
Created 12 January 2021, 19:09 (CET)