Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock

Abstract Background This study aimed to investigate the feasibility of optical coherence tomography angiography (OCT-A) for quantitative analysis of flow density to assess changes in retinal perfusion in an experimental model of haemorrhagic shock. Methods Haemorrhagic shock was induced in five healthy, anaesthetized sheep by stepwise blood withdrawal of 3 × 10 ml∙kg− 1 body weight. OCT-A imaging of retinal perfusion was performed using an OCT device. Incident dark-field illumination microscopy videos were obtained for the evaluation of conjunctival microcirculation. Haemodynamic variables and flow density data in the OCT angiogram were analysed before and during progressive haemorrhage resulting in haemorrhagic shock as well as after fluid resuscitation with 10 ml∙kg− 1 body weight of balanced hydroxyethyl starch solution (6% HES 130/0.4). Videos of the conjunctival microcirculation were recorded at baseline, in haemorrhagic shock, and after resuscitation. Data are presented as median with interquartile range. Comparisons between time points were made using Friedman’s test and the degree of correlation between two variables was expressed as Spearman’s rank correlation coefficient. Results Mean arterial pressure and cardiac index (CI) decreased and lactate concentration increased after induction of shock, and haemodynamics recovered after resuscitation. The flow density in the superficial retinal OCT angiogram decreased significantly after shock induction (baseline 44.7% (40.3; 50.5) vs haemorrhagic shock 34.5% (32.8; 40.4); P = 0.027) and recovered after fluid resuscitation (46.9% (41.7; 50.7) vs haemorrhagic shock; P = 0.027). The proportion of perfused vessels of the conjunctival microcirculation showed similar changes. The flow density measured using OCT-A correlated with the conjunctival microcirculation (perfused vessel density: Spearman’s rank correlation coefficient ρ = 0.750, P = 0.001) and haemodynamic parameters (CI: ρ = 0.693, P

Tags
Data and Resources
To access the resources you must log in

This item has no data

Identity

Description: The Identity category includes attributes that support the identification of the resource.

Field Value
PID https://www.doi.org/10.6084/m9.figshare.c.4116353
PID https://www.doi.org/10.6084/m9.figshare.c.4116353.v1
URL http://dx.doi.org/10.6084/m9.figshare.c.4116353
URL http://dx.doi.org/10.6084/m9.figshare.c.4116353.v1
Access Modality

Description: The Access Modality category includes attributes that report the modality of exploitation of the resource.

Field Value
Access Right not available
Attribution

Description: Authorships and contributors

Field Value
Author Alnawaiseh, Maged
Author Ertmer, Christian
Author Seidel, Laura
Author Arnemann, Philip
Author Lahme, Larissa
Author Tim-Gerald Kampmeier
Author Rehberg, Sebastian
Author Heiduschka, Peter
Author Eter, Nicole
Author Hessler, Michael
Publishing

Description: Attributes about the publishing venue (e.g. journal) and deposit location (e.g. repository)

Field Value
Collected From Datacite
Hosted By figshare
Publication Date 2018-01-01
Publisher Figshare
Additional Info
Field Value
Language UNKNOWN
Resource Type Collection
keyword FOS: Biological sciences
system:type other
Management Info
Field Value
Source https://science-innovation-policy.openaire.eu/search/other?orpId=dedup_wf_001::0493bebff3e7c40d9370653f22795b8d
Author jsonws_user
Last Updated 19 December 2020, 17:01 (CET)
Created 19 December 2020, 17:01 (CET)